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NUMERICAL SOLUTIONS OF THE NONLINEAR AXISYMMETRIC 
EQUATIONS FOR SHELLS OF REVOLUTION 

ABSTRACT 

A numerical procedure for the solution of the nonlinear equations govern- 
ing the large axisymmetric deflections of thin shells of revolution is pre- 
sented and applied both to the complete equations due to Reissner and to the 
simpler equations to which these reduce for small-finite angle changes. 
Global solutions extending into the postbuckled range are shown to be consid- 
erably more complicated than expected. The character of the global solution 
is also shown to be quite sensitive to boundary conditions imposed. A compar- 
ison of the results obtained from the complete equations and the small-finite 
deflection equations reveals a very close agreement through the entire load- 
deflection history. 
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NOMENCLATURE 

o 

h 

r U).zft(0 o o 

♦,  ♦    » slope of meridian on deformed, undeformed middle surface 

V . E - 

C ■ 

D ■ 

V . H - 

* - 

B - 

P " 

P ■ 

v Pv" 

p ■ 

p#- 

Ne- 
Me- 

u . w ■ 

w Co) - 

k ■ 

a ■ 

?o- 

m- - 

X2 - 

shell thickness 

horizontal and vertical coordinates of undeformed middle surface 

(r')2 ♦ (z')2, where primes refer to differentiation with 

respect to the independent variable, (. 

Poisson's ratio. Young's modulus 

l/(Eh) 

Eh3/12(l-v2)) 

vertical, horizontal stress resultants 

r H « stress function 
o 

(♦_ - ♦) * rotation of meridional tangent 

uniform pressure, psi 

nondlmensionalized pressure 

horizontal, vertical components of uniform pressure 

concentrated load at apex of spherical shell 

aP/(2irEh3) ■ nondimensional load parameter 

meridional, circumferential stress resultants 

meridional, circumferential stress couples 

horizontal, vertical deflections 

vertical deflection at apex of sphere 

mesh spacing 

radius of spherical shell 

half-angle opening of spherical shell 

12(l-v2) 

m2c| a/h * nondimensional geometric parameter for shallow 
spherical shell. 

iii 
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INTRODUCTION 

The objective of this paper is the description and application of a 

numerical procedure for the solution of the nonlinear differential equations 

governing the finite axisymmetric deformation of thin shells of revolution as 

presented by Reissner.1 The procedure is applied both to the complete equa- 

tions (I and II of Reference 1), valid for arbitrarily large deflections con- 

sistent with snail strains, as well as to the simpler set of equations (III 

and IV of Reference l) valid for small-finite angle changes. The latter set 

of equations (or their equivalent) has formed the basis for many previous 

investigations in this area.    Thurston7 has studied the complete equations 

but does not report on a comparison of the results of the two sets of equa- 

tions. The present study consists essentially of an application of Newton's 

method8 to obtain a system of linear correctional equations for an initial 

approximate solution and the employment of a Gaussian elimination procedure9 

for the solution of the finite difference equivalent of this linear system. 

Archer,1* Wilson and Spier,10 and others have previously employed a Gaussian 

elimination procedure in this problem area, while Thurston5 has utilized 

Newton's method for the case of uniform pressure on a clamped spherical cap. 

The specific advantage provided by the procedure discussed in this paper is 

that it more completely characterizes the solutions. In particular, it per- 

mits development of global solutions which are shown to be continuous from 

the small deflections encountered in the prebuckled state through the large 

deflections of the postbuckled state. The continuous character of these 

solutions is not only interesting from a theoretical point of view but is 

also useful in permitting one to develop a complete load-deflection history 

for a new geometry and loading condition without having a priori estimates of 

the solution in either the prebuckled or the postbuckled state. 

To illustrate this latter point, we consider the problems of a clamped 

spherical shell under uniform pressure and that of a spherical shell under a 

concentrated load at the apex, with a clamped edge and with an unrestrained 

edge. New results are presented for these problems in the so-called post- 

buckled range. 



BASIC EQUATIONS 

Reissner1 has given the equations governing the finite axisymraetric 

deflections of thin shells of revolution in the form 

(♦-♦)" ♦ (F'/F )(♦-*)' - (o /r )2(cos ♦Hsin ^ - sin A ) oooooo o 

♦ v («Ä/
r

Ä)[(C08 ♦ - C08 ♦«)♦! * (D'/DHsln ^ - sin 4 )] O     O   u 0     0 o J 

■ oJ/(r D)   U, sin 4 - r V   cos ♦] (l) o      o      u o - 

♦" * ^o^o^' " P0o C08 ♦^o^ " v(oo/^o)(♦, 8in ♦ ^ C, C08 */C)]* 

■ (o£c/r )(cos 4 - cos * ) ♦ voÄ(sin ♦)(r V)'/^ 
00 00 00 

♦ [(o /r )2 cos ♦ sin ♦ ♦ v(a /r )(♦' cos ♦ - c' sin ♦/C)] r V u   o   o 00 ^    o 

- («o/ro)(ro %>' - ^%'ro)Z "■ ♦ - <"0
c,'/('oC'3 'o % (2' 

where Fä ■ (r D/Oä),       Gä ■ r /be), 
o 00 000 

where primes denote differentiation with respect to the independent variable 

C« and where subscript zero refers to the value of the subscripted quantity 
before deformation (see Figure 1). 

The appropriate stress and moment resultants and displacements are 

expressed in terms of + end 4» by the relations 

roV    ' " /ropV V^ 

r H_ « ♦ cos ♦ ■♦• r V sin 6 
O   J; O 

r Q   ■ - ü» sin ♦ ♦ r V cos 6 
o 0 

aoNe " ♦' + roaopH (3) 

at"   • ~- 
-   • HWP 



M. ■ -D [U-O'/oi    * v(sin * - sin *  )/rJ 
^                 L          O          O O        Cr 

K ■ -D [(si« ♦ - sin ♦   )/r    ♦ v(*-*  )'/a 1 
0                  *• O        O 0           0^ 

u » ro(ne - vN^)/C 

w ■    /[(sin ^ - sin *   ) •♦' sin * (N    - vNJ/c]  a <U. u O ^ 9 O 

For small-finite deflections (62  =  (♦ -♦)2 «l). Equations 1 euid 2 

simplify to 

poaM -f FjB1 ♦ F26 ♦ r3i, « Tj (»♦) 

Gu," •••Gij»,*Gd» + G6«r (5) 
o T 1T 2 3 2 

where F   « F ' 0.  ■ O^1 

lo l        o 

F   ■ - (r')2 D/(r aft) ♦ virD/a)' 
2 O 0  O O        O 

G. -- (r')2/(r a C) - v(r'/o C)' z o o o o   o 

F3 ■ ao 8in  ♦o G3    ' -F3 

ri - B3r(;z;D)/(2roao) - v(z;D/2ao)'jß2 (6) 

+ a r V cos <>    + a ß[> cos ♦    ♦ r V sin ♦  I oo oo oo o* 

ro -  [(2*V)/(r o C) ♦ vU'/a criß*    ♦ vz'ß'i^/Ca C) 
2uOOOO OO- O O 

- aÄ ß2cos i/2 ♦ [rV/(r a C) ♦ v(z'/o C)']   (r V) 
o o oooo ooo 

♦ v(zVo C)(r V)' ♦  [(z'2 - r'2)/(a r C) - v(rVa^O'JCr V)ß 
OOO wO O OO 0O-0 

- vr;(BroV)7(aoC) - (ro
2PH)VC -  [v(r; ♦ Qz'J - r^'/cJCr^/C) 

The corresponding simplification of Equations 3 will not be reproduced here 

in the interest of   brevity. 



METHOD OF SOLUTION 

• 

As mentioned, the numerical technique employed in this report combines the 

standard Gaussian elimination procedure with the classical Newton iteration 

method.    The former substantially reduces the demands made upon a digital 

computer with respect to both memory and speed.    The latter improves conver- 

gence significantly an 1«when coupled with a fairly direct method for obtain- 

ing starting solutions, permits the development of solutions in the so-called 

postbuckled range. 

Details of the procedure are perhaps most compactly presented in terms 

of the small-finite deflection equations. Extension to the more general 

equations follows easily. The essence of the Newtonian iterative scheme as 

outlined in Reference 8 consists in replacing the nonlinear differential equa- 

tions by a sequence of linear differential equations. Specifically, a cor- 

rection (66., 6ij/ ) to the approximate solution (ß., ty.) is sought according 

to the prescription 

8" 6J + "j 

<»•♦.♦ «Sil». 
(7) 

where (ß,^) is the actual solution. Inserting (7) into (M and (5) and 

omitting terms in P , F which are negligible, the result may be written 

F    öß" ♦ F^ß! ♦ (F - a *,  cos * ) «ß. ♦ (F    -aß, cos ♦  )  «ij», 
ojlj 2oJ oj 30.I O.I 

ri-ri-{Foßj*Fiß.;*F2
ßj* Vj) 

(8) 
G

Ä *** * M*« * C'->W* * (^ ♦ M4 C08 O 6ß« OJ1JZJ 30J OJ 

" r2* '  '2 -  lG0*i * Gl*'3 * 02*J * G3  ei}- 

In Equations 8 we have omitted nonlinear terms in öß« and 6(|<., since for em 

assumed solution (ß , ip.) reasonably close to the correct solution these terms 
J      J 

are small compared to the linear terms.    An iterative procedure is now 

m     aammmmmmmß 



adopted in which Equations 8 are solved for (36*,  6^,) and a nev approxinat' 

solution (l^.,»  "''«o.i)  i8 obtained from 

(9) 

Bi 

r-2Fo ♦ k2(F2 - oo(cos ♦0)i|»)    k2(F    - ao(co8*0)ß) 

lt2(G, ♦ aÄ(cos ♦  )6) -2G    ♦ k2G, 
3O0 O 2 

If the original boundary conditions are formulated as 

BlTl   * C1T2  "  Dl 

AT    .  •♦• B T    « D n n-l        n n        n 

(13) 

If the correction terms (66.,  Öi|/ ) approach zero as the number of iterations 
J        J 

increase, then the approximate solution obtained by this iterative process 

approaches an exact solution of the original equations.    For the solution of 
Equations 8, ve replace derivatives by simple central differences over a mesh 

of n points with spacing k and obtain 

VTi-i ♦ Bi <Ti+ ci 6Ti+l' Di (10) 

i ■ 2,3,.... n-l 

where, in the compact notation employed by Archer,1* 

M /M\ 

l*/i W/i 
rFo - kFj/2 0 \ A   •»• kF /2 0 

Ai -I 0 •   ci ■ 
0 Oo-M,^ \        0 0o*Ml/2ji 

^■MV^nv^HBtflBBi^aHBBi^BMrr**-w^HMi«^i^HM^BWi 



then the boundary conditions for the modified problem become 

BjdTj ♦ CJÖTJ - Dj - BJTJ - CJTJ - Dj* - 0 

A6T % * B 6T    «D -AT  -BT»D*»0. ilh) 
n n-l   n n   n   n n-i  n n  n 

The process of Gaussian elimination very efficiently inverts this system 

of equations.    This process may be compactly summarized by the relations'4 

Wj ■ Bj Sj « W^Dj Rj « W^Cj 

(15) 

wi-Bi-AiRi-i Si-^i-VW 

Ri * Wi Ci i ■ 2,3,.... n-l 

W-B-AR, S-VT^D-AS,) n       n       n n-l n       n      n       n n-l 

T   « S T. ■ S, - R.T,   , i ■ n-l,....  1. 
n       n i        i        i i-1 

A detailed description of the selection of starting values and of the pro- 

cedure for obtaining solutions in the postbuckled regions is best given with 

reference to a specific example and is postponed until the next section. 

Relssner's complete equations may be treated in essentially the same 

fashion, with terms such as cos <P  replaced by 

cos ♦ H cos (♦ - 8) « cos (♦ -6.-60.) o oil 

■ cos (♦ - 6.) + 6B.  sin U - ß.) (l6) 
O    1      1       O    1 

and 
sin ♦ ■ sin (* - 6.) - Öß. cos (♦ - ß.). 

O    1      1       o    i 

The finite difference simulation of the complete equations then has the same 

form as that for the small-finite deflection equations. The modifications of 

the definitions for FK, Gj. are not presented here in the interest of brevity, 

and, also, in view of the outcome of the comparison to be made between the 

results of the two sets of equations. 



NUMERICAL RESULTS 

a. Concentrated Load on Spherlca' Shell 

Consider first the case of a spherical segment with a concentrated load P 

at the apex and an unrestrained edge. For this problem the equations of the 

middle surface of the shell are taken as 

r « a sin £,    z « -a cos € (17) 
o o 

while 

PH - Pv - 0,     (roV) « P/2ir. (18) 

Convenient nondimensional geometric and load parameters are defined as 

X2« m2^2 a/h   and  P# ■ aP/(2irEh3). (19) 
o 

We observe that although it is not necessary to confine attention to shallow 

shells, nonetheless, due to the nature of the load, this is the most interest- 

ing area of application. If deep shells are being considered, the definition 

of A2 involves sin2(C ) rather than f,    .    Appropriate boundary conditions are 

ß ■ ♦ ■ 0    atC»0 

M. ■ # ■ 0    at C « ^0. 
(20) 

With this information one may proceed as follows:    For a given value of 

X and P   the linear solution is first obtained by suppressing nonlinear terms 

in r.  and r..    (In this connection, P    is initially chosen small enough that 

the linear solution is reasonably appropriate).    The linear solution is used 

as an initial estimate of the nonlinear solution (6  ,  ip )  for the same P «and 
o  o 

Equations 8 are solved for the corrections (6ß0, 6* ) to this initial esti- 

mate. The corrected set of solution values (ß , i|« ) is used to obtain a new 

set of corrections (öBj, 6^), and the process is repeated until the solution 

converges to a specified degree of accuracy.  In this connection, it should 

be noted that as a convercence criterion we employed the requirement that for 

the m™  iteration and for each point i on the mesh 



—LE LEli < o.OOl .      -i-S LJÜ^I < o.OOl. (21) 

n 
When satisfactory convergence has been achieved for a fdven value of P  , 

stresses and displacements alonp: a shell meridian may be calculated.    Then P 

is incremented and the previously converged solution for the lower value of 

P    is used to start the iteration for the higher value of P .    In this manner 

curves of load versus deflection are obtained for r;iven values of X.    It is a 

relatively direct matter to move alonp; a branch of the load-deflection curve 

until a local maximum (or minimum) is reached.    At such a point, the fol^owlnp 

simple procedure was found to be adequate for obtaining starting solutions on 
ML 

the neighboring (continuous) branch. For a value of P slightly below the 

maximum (or above the minimum), take as a starting set of ß and 4/  a multiple 

(9 3, 6 tj/) of the solution found for P on the preceding branch. A very 

small amount of numerical experimentation is sufficient to find constant values 

of 9. and 9« which produce a convergent solution on the new branch. These 

values of 9. and 9. depend on X2 and P , but generally, 1.0 < (9j, 92) < 3.0 

for branches moving to the ripht (larger deflections), while 0.50 < (0j, 92) < 

1.0 for branches moving to the left (smaller deflections). It is now a simple 

matter to move alonp the new branch until another local minimum (or maximum) 

is found. 

For the specific problem under discussion, the load deflection curves 

for small X (say X2 5 lk) are found to be monotonically increasing. As X 

increases, local maxima and minima emerpe but the curves still retain the 

Keneric shape frequently associated with (or postulated for) the mechanism of 

buckling (see Fipure 2). Our objective in this report is not so much the 

prediction of buckling loads for this problem (this was done in Reference 11, 

where excellent arreerr.ent with the experimental results of Evan-Iwanowski, et 

al,  was demonstrated), but is concerned rather with the observation that for 

higher X values the character of the load-deflection curve changes consider- 

ably.  For example, in Fif-uren 3a, b, and c, we present numerical results for 

X?  = 6U, 81, and Ikk. 



To emphasize the dependence of the solution upon boundary conditions ve 

present In Figure k  the load-deflection curve obtained for the same problem, 

with X2 ■ lUk  but with a clamped edge and, therefore, the boundary conditions; 

6«i(»»0     atC»0 
(22) 

B»u»0     at £»£, 
o 

The difference in behavior of the solution produced by this change in the 

boundary condition is rather surprising in view of the loading. We observe 

that there is also experimental evidence of a marked difference in the 

behavior of clamped versus unrestrained spherical caps under concentrated 

loads. Evan-Iwanowski,et al,12 concluded on the basis of detailed experimental 

studies that such a clamped shell exhibits the load deformation pattern shown 

in Figure U and, therefore, does not buckle. 

Finally, we observe that the numerical results obtained by using the 

complete equations differed only very slightly from those obtained from the 

small-finite equations. The overall character of the two sets of results is 

the same, i.e., the load-deflection curves have the same continuous character 

and the same number of branches. Numerically, the typical deviation along a 

branch of the curves is of the order of one percent, even for the final post- 

buckled branch where maximum discrepancy is to be expected. The greatest 

deviations occur near the maxima or minima of a branch, but even there the 

discrepancy is so slight that the difference between the load-deflection 

curves is barely discernible on a graph of reasonable scale. 

b. Uniform Pressure on Spherical Cjp 

Turning next to the case of uniform pressure p on a clamped spherical 

shell, we have for loading conditions 

2 
pu ■ p sin C-     p ■ -p cos C      r V = r p/2 (23) 
n  ' v o    o 

where 

r « a sin ^        z = -a cos ^. (2U) 

Nondimensional geometric and load parameters are 



X2 ■ m2C2 a/h   and    p - -mVp/C^Eh2). (25) 
o 

We shall also make use of the "average deflection" parameter p, defined as 

p ■ m2w/h 

where « 

w ■ (2/R2) / 0 r w dr (26) 
o 

o 
and 

R ■ a sin t.  . 
o       o 

Boundary conditions for the clamped spherical shell are 

ßBu»0     atCaC. o 

(27) 

Typical load-deflection curves obtained for this problem are illustrated in 

Figures 5 through 8. These curves bring out a gradual transition from the 

simpler behavior for A ■ 5 through a more elaborate behavior for A ■ 8, a 

return to a relatively simple pattern for A « 12, and finally, the emergence 

of the more intricate behavior again at A « 20. 

As in the case of the concentrated load, use of the complete equations 

produced no essential change in the qualitative behavior of the solution, 

viz., the load-deflection curves are continuous and have the same number of 

branches as do the solutions of the small-finite equations. Quantitatively, 

the agreement is again very good, with the greatest discrepancies being of the 

order of a few percent and occurring at the maxima or minima of the curves. 

The agreement persists even into the final branch of the curves, which cor- 

responds to a nearly inverted shallow shell. 

DISCUSSION OF RESULTS 

The present numerical results demonstrate the existence of a large num- 

ber of distinct equilibrium positions for a given load and for certain ranges 

of the geometric parameter. The existence of these multiple solutions is also 

shown to be dependent to a great extent upon the boundary conditions but to 

10 



be Independent of the employment of the complete equations rather than the 

small-finite deflection equations.    Recently (during the preparation of this 

paper, in fact), it came to the writer's attention that Anselone, Bueckner, 

Johnson, and Moore,13,^ have studied the large deflections of a clamped 

shallow spherical cap under uniform pressure and, employing a completely dif- 

ferent technique from the one described here, have obtained results which 

exhibit the same continuous character and which agree quite well numerically 

with those presented here.    We note also that Thurston5 and Keller and Reiss6 

have pointed out the possibility of multiple equilibrium configurations for 

pressure loading on a- clamped spherical cap, although their results do not 

bring out the continuity of the solutions. 

The increasing complexity in the structure of the solutions as X increases 

brings out some Interesting features.    In particular, the present   results 

demonstrate (for the clamped, pressurized spherical cap and the unrestrained 

spherical cap under concentrated load) the existence of a number of bifurca- 

tion points in the axisymmetric solution.    We observe that although two dis- 

tinct equilibrium positions are possible at such a point, the distributions 

of displacements along a meridian were found to be quite dissimilar, and a 

change from one path to the other would involve finite (rather than infinitesi- 

mal) changes in deflection.    It is interesting, therefore, to note that the 

shell under concentrated load apparently ignores these bifurcation points 

since the load-de flection curves obtained experimentally by Evan-Iwanowskl 

et al,12 are in very good agreement with the branch producing the first maxi- 

mum on the continuous curve. 

In the case of uniform pressure, it is interesting to observe that if one 

defines the critical pressure as that corresponding to the first maximum on 

the load-deflection curve, the results obtained in the present study agree 

very closely with the four most widely accepted sets of results for the axi- 
2—5 symmetric treatment of this problem. Furthermore, our results for the 

minimum pressure in the postbuckled range agree quite closely with those 

obtained by Thurston,5 who was able to obtain results in this zone without 

establishing the continuity of the global solution.    One clear advantage of 

having the complete solution is the following:    As Budiansky2 points out, 

referring to cases where the maxima were not located with certainty:  "Strictly 

11 



speaking, it must be conceded that the upper bounds in these casas have not 

been rigorously established, since it is conceivable that failure to converge 

might be due to some unknown cause other than the nonexistence of an adjacent 

equilibrium position."   The present results make it clear that the results of 

References 2 through 5 are actually the first maxima on the load-deflection 

curves.    They also reinforce (though any further reinforcement is hardly 

necessary in view of the results of Reference 13)      Budiansky's assertion that 

one must include   asymmetric    effects in the study of the buckling of spheri- 
cal shells.    We conjecture here that the axisymmetric global solutions may 

prove useful in the more difficult problem area of large nonsynnetric deforma- 

tions by providing basic states about which to expand, particularly in the post- 

buckled zone. 

It is considered worth mentioning that strain and potential energies 

were computed for the various deformation states and the so-called energy 

criteria of buckling (i.e., constant volume and constant pressure buckling) 

were applied.    The results again agreed quite closely with those reported by 

Thurston,7 and are not reported here in the interest of brevity.    However, we 

observe, strictly speaking, that in order to employ such an energy criterion 

one should have the complete global solution available in order that the 

energy levels of all competing equilibrium states be compared. 

Finally, we remark that the degree of compatibility between the results 

of the complete equations and the small-finite deflection equations is some- 

what surprising since the latter contain only the simplest type of nonlinear!ty, 

whereas, the nonlinearity in the complete equations is more complex.    The 

analytical and practical advantages offered by the simpler equations are suf- 

ficiently large - for example, the computer program for the simpler set takes 

only one-third as long to run—that exploitation should be made of this agree- 

ment whenever possible. 

12 



Figur« I. GEOMETRY 

Figure 2. LOAD-DEFLECTION CURVES (UNRESTRAiNED EDGE) 
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Figurt i». LOAO-DEFLECTION CURVE (CLAMPED EDGE; A* - m) 
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Figur« 5.  LOAD-DEFLECTI ON CURVE (CLAMPED EDGE; X3 - 25) 
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Figure 7.   LOAD-DEFLECTION CURVE" (CLAMPED EDGE;  k2 • m) 
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